广升麻

注册

 

发新话题 回复该主题

分享最全的色谱前处理方法 [复制链接]

1#

样品前处理是一项极其耗时、繁琐且容易引入分析测定误差的过程。常见样品前处理方法对样品的分析起着至关重要的作用,某种程度上来说,前处理决定了分析测试的结果,本文为大家呈现了常见样品前处理方法。

固相萃取SPE1简介固相萃取(Solid-PhaseExtraction,简称SPE)是近年发展起来一种样品预处理技术,由液固萃取和柱液相色谱技术相结合发展而来,主要用于样品的分离,纯化和富集,降低样品基质干扰,提高检测灵敏度,与传统的液液萃取法相比较可以提高分析物的回收率,更有效的将分析物与干扰组分分离,减少样品预处理过程,操作简单、省时、省力。广泛的应用在医药、食品、环境、商检、化工等领域。2基本原理SPE技术基于液-固相色谱理论,采用选择性吸附、选择性洗脱的方式对样品进行富集、分离、净化,是一种包括液相和固相的物理萃取过程;也可以将其近似地看作一种简单的色谱过程。SPE是利用选择性吸附与选择性洗脱的液相色谱法分离原理。较常用的方法是使液体样品溶液通过吸附剂,保留其中被测物质,再选用适当强度溶剂冲去杂质,然后用少量溶剂迅速洗脱被测物质,从而达到快速分离净化与浓缩的目的。也可选择性吸附干扰杂质,而让被测物质流出;或同时吸附杂质和被测物质,再使用合适的溶剂选择性洗脱被测物质。固相萃取法的萃取剂是固体,其工作原理基于:水样中待测组分与共存干扰组分在固相萃取剂上作用力强弱不同,使它们彼此分离。固相萃取剂是含C18或C8、腈基、氨基等基团的特殊填料。3操作步骤针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。1、填料保留目标化合物(固相萃取操作一般有四步)活化----除去小柱内的杂质并创造一定的溶剂环境。上样----将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。淋洗----最大程度除去干扰物。洗脱----用小体积的溶剂将被测物质洗脱下来并收集。2、填料保留杂质(固相萃取操作一般有三步)活化--除去柱子内的杂质并创造一定的溶剂环境。上样--将样品转移入柱,此时大部分目标化合物会随样品基液流出,杂质被保留在柱上,故此步骤要开始收集。洗脱---用小体积的溶剂将组分淋洗下来并收集,合并收集液。此种情况多用于食品或农残分析中去除色素。4特点相对于传统的液液萃取法和蛋白沉淀法,固相萃取具有无可比拟的优势,具体如下:(1)LLE(液液萃取)优点:无需特殊装置缺点:a.操作繁琐,费时b.需要耗费大量的有机溶剂,导致高成本和对环境的污染c.难以从水中提取高水溶性物质(2)PPT(蛋白沉淀)优点:操作简单,无需特殊装置缺点:a.非特异性的沉淀反应可能使微量的分析物随着基质蛋白质共同沉淀而损失。b.净化效果较弱,检测灵敏度和可靠性低。(3)SPE(固相萃取)优点:a.可同时完成样品富集与净化,大大提高检测灵敏度b.比液液萃取更快,更节省溶剂,可自动化批量处理c.重现性好缺点:a.使用进口固相萃取小柱成本较高b.需要专业人员协助进行方法开发QuEChERSQuEChERS(Quick、Easy、Cheap、Effective、Rugged、Safe),是近年来国际上最新发展起来的一种用于农产品检测的快速样品前处理技术,由美国农业部Anastassiades教授等于年开发的。原理与高效液相色谱(HPLC)和固相萃取(SPE)相似,都是利用吸附剂填料与基质中的杂质相互作用,吸附杂质从而达到除杂净化的目的。1简单步骤QuEChERS方法的步骤可以简单归纳为:(1)样品粉碎;(2)单一溶剂乙腈提取分离;(3)加入MgSO4等盐类除水;(4)加入乙二胺-N-丙基硅烷(PSA)等吸附剂除杂;(5)上清液进行GC-MS、LC-MS检测。2优点QuEChERS方法有以下优势:(1)回收率高,对大量极性及挥发性的农药品种的回收率大于85%;(2)精确度和准确度高,可用内标法进行校正;(3)可分析的农药范围广,包括极性、非极性的农药种类均能利用此技术得到较好的回收率;(4)分析速度快,能在30min内完成6个样品的处理;(5)溶剂使用量少,污染小,价格低廉且不使用含氯化物溶剂;(6)操作简便,无需良好训练和较高技能便可很好地完成;(7)乙腈加到容器后立即密封,使其与工作人员的接触机会减少;(8)样品制备过程中使用很少的玻璃器皿,装置简单。ASE加速溶剂萃取加速溶剂萃取的方法(ASE)。该法是一种在提高温度和压力的条件下,用有机溶剂萃取的自动化方法。加速溶剂萃取或加压液体萃取(pressurizedliquidextraction,PLE)是在较高的温度(50~℃)和压力(~PSI)下用有机溶剂萃取固体或半固体的自动化方法。提高的温度能极大地减弱由范德华力、氢键、目标物分子和样品基质活性位置的偶极吸引所引起的相互作用力。液体的溶解能力远大于气体的溶解能力,因此增加萃取池中的压力使溶剂温度高于其常压下的沸点。该方法的优点是有机溶剂用量少、快速、基质影响小、回收率高和重现性好。1简介复杂样品的前处理,常常是现代分析方法的薄弱环节,在以往的数年中,人们做了多种尝试以期找到一种高效、快捷的方法以取代传统的萃取法,例如,自动索氏萃取、微波消解、超声萃取和超临界萃取等。值得注意的是,以上各法无论是自动索氏萃取,还是超临界流体萃取??等,都有一个共同点,即与温度有关。在萃取过程中,通过适当提高温度,可以获得较好的结果。例如,在自动索氏萃取中,由于萃取时是将样品浸入沸腾的溶剂之中,因此,其萃取速度和效率较常规索氏萃取法快且溶剂用量少。超临界流体萃取可通过提高萃取时的温度使其回收率得到改善。而微波萃取则是利用一种可以施加压力的容器,将溶剂加热到其沸点之上,来提高其萃取的效率。虽然以上各法与经典的索氏法相比已有了很大的进步,但有机溶剂的用量仍然偏多,萃取时间较长,萃取效率还不够高。上世纪末,Richter等介绍了一种全新的称之为加速溶剂萃取的方法(ASE)。该法是一种在提高温度和压力的条件下,用有机溶剂萃取的自动化方法。与前几种方法相比,其突出的优点是有机溶剂用量少、快速、回收率高。该法已被美国+HD(环保局)选定为推荐的标准方法(标准方法编号)。2原理加速溶剂萃取是在提高的温度(50~℃)和压力(~psi或10.3~20.6MPa)下用溶剂萃取固体或半固体样品的新颖样品前处理方法。(1)在提高的温度下萃取提高温度使溶剂溶解待测物的容量增加。Pitzerk等报道,当温度从50℃升高至℃后,蒽的溶解度提高了约15倍;烃类的溶解度,如正二十烷,可以增加数百倍。Sekine等报道水在有机溶剂中的溶解度随着温度的增加而增加。在低温低压下,溶剂易从“水封微孔”中被排斥出来,然而当温度升高时,由于水的溶解度的增加,则有利于这些微孔的可利用性。在提高的温度下能极大地减弱由范德华力、氢键、溶质分子和样品基体活性位置的偶极吸引力所引起的溶质与基体之间的强的相互作用力。加速了溶质分子的解析动力学过程,减小解析过程所需的活化能,降低溶剂的粘度,因而减小溶剂进入样品基体的阻滞,增加了溶剂进入样品基体的扩散,已报道温度从25℃增至℃,其扩散系数大约增加2~10倍,降低溶剂和样品基体之间的表面张力,溶剂更好地浸润样品基体,有利于被萃取物与溶剂的接触。(2)在加压下萃取液体的沸点一般随压力的升高而提高。例如丙酮在常压下的沸点为56.3℃,而在5个大气压下,其沸点高于℃。液体对溶质的溶解能力远大于气体对溶质的溶解能力。因此欲在提高的温度下仍保持溶剂在液态,则需增加压力。另在加压下,可将溶剂迅速加到萃取池和收集瓶。(3)热降解由于加速溶剂萃取是在高温下进行,因此,热降解是一个令人
分享 转发
TOP
发新话题 回复该主题